325 research outputs found

    Testing collapse models with levitated nanoparticles: the detection challenge

    Get PDF
    We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges

    Probing modified gravity with magnetically levitated resonators

    Get PDF
    We present an experimental procedure, based on Meissner effect levitation of neodymium ferromagnets, as a method of measuring the gravitational interactions between milligram masses. The scheme consists of two superconducting lead traps, with a magnet levitating in each trap. The levitating magnets behave as harmonic oscillators and, by carefully driving the motion of one magnet on resonance with the other, we find that it should easily be possible to measure the gravitational field produced by a 4 mg sphere, with the gravitational attraction from masses as small as 30 μg predicted to be measurable within a realistic measurement time frame. We apply this acceleration sensitivity to one concrete example and show the abilities of testing models of modified Newtonian dynamics

    Non-interferometric test of the Continuous Spontaneous Localization model based on rotational optomechanics

    Get PDF
    The Continuous Spontaneous Localization (CSL) model is the best known and studied among collapse models, which modify quantum mechanics and identify the fundamental reasons behind the unobservability of quantum superpositions at the macroscopic scale. Albeit several tests were performed during the last decade, up to date the CSL parameter space still exhibits a vast unexplored region. Here, we study and propose an unattempted non-interferometric test aimed to fill this gap. We show that the angular momentum diffusion predicted by CSL heavily constrains the parametric values of the model when applied to a macroscopic object

    Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers

    Get PDF
    6siCollapse models predict a tiny violation of energy conservation, as a consequence of the spontaneous collapse of the wave function. This property allows us to set experimental bounds on their parameters. We consider an ultrasoft magnetically tipped nanocantilever cooled to millikelvin temperature. The thermal noise of the cantilever fundamental mode has been accurately estimated in the range 0.03 – 1 K, and any other excess noise is found to be negligible within the experimental uncertainty. From the measured data and the cantilever geometry, we estimate the upper bound on the continuous spontaneous localization collapse rate in a wide range of the correlation length rC. Our upper bound improves significantly previous constraints for r_C > 10^−6  m, and partially excludes the enhanced collapse rate suggested by Adler. We discuss future improvements.openopenVinante, A.; Bahrami, M.; Bassi, A.; Usenko, O.; Wijts, G.; Oosterkamp, T.H.Vinante, A.; Bahrami, Mohammad; Bassi, Angelo; Usenko, O.; Wijts, G.; Oosterkamp, T. H

    Testing Dissipative Collapse Models with a Levitated Micromagnet

    Get PDF
    We present experimental tests of dissipative extensions of spontaneous wave function collapse models based on a levitated micromagnet with ultralow dissipation. The spherical micromagnet, with radius R=27R=27 μ\mum, is levitated by Meissner effect in a lead trap at 4.24.2 K and its motion is detected by a SQUID. We perform accurate ringdown measurements on the vertical translational mode with frequency 5757 Hz, and infer the residual damping at vanishing pressure γ/2π<9\gamma/2\pi<9 μ\muHz. From this upper limit we derive improved bounds on the dissipative versions of the CSL (continuous spontaneous localization) and the DP (Di\'{o}si-Penrose) models with proper choices of the reference mass. In particular, dissipative models give rise to an intrinsic damping of an isolated system with the effect parameterized by a temperature constant; the dissipative CSL model with temperatures below 1 nK is ruled out, while the dissipative DP model is excluded for temperatures below 101310^{-13} K. Furthermore, we present the first bounds on dissipative effects in a more recent model, which relates the wave function collapse to fluctuations of a generalized complex-valued spacetime metric.Comment: 10 pages, 7 figure

    Amplification of electromagnetic waves by a rotating body

    Full text link
    In 1971, Zel'dovich predicted the amplification of electromagnetic (EM) waves scattered by a rotating metallic cylinder, gaining mechanical rotational energy from the body. Since then, this phenomenon has been believed to be unobservable with electromagnetic fields due to technological difficulties in meeting the condition of amplification, that is, the cylinder must rotate faster than the frequency of the incoming radiation. Here, we show that this key piece of fundamental physics has been hiding in plain sight for the past 60 years in the physics of induction generators. We measure the amplification of an electromagnetic field, generated by a toroid LC-circuit, scattered by an aluminium cylinder spinning in the toroid gap. We show that when the Zel'dovich condition is met, the resistance induced by the cylinder becomes negative implying amplification of the incoming EM waves. These results reveal the connection between the concept of induction generators and the physics of this fundamental effect that was believed to be unobservable, and hence open new prospects towards testing the Zel'dovich mechanism in the quantum regime, as well as related quantum friction effects.Comment: 5 pages and 3 figure plus supplementary fil

    Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature

    Full text link
    We apply a feedback cooling technique to simultaneously cool the three electromechanical normal modes of the ton-scale resonant-bar gravitational wave detector AURIGA. The measuring system is based on a dc Superconducting Quantum Interference Device (SQUID) amplifier, and the feedback cooling is applied electronically to the input circuit of the SQUID. Starting from a bath temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the coolest normal mode. The same technique, implemented in a dedicated experiment at subkelvin bath temperature and with a quantum limited SQUID, could allow to approach the quantum ground state of a kilogram-scale mechanical resonator.Comment: 4 pages, 4 figure
    corecore